Equations of families of Complex Algebraic Surfaces with $p_{g}=q=2$ (Joint work with Fabrizio Catanese)

MASSIMILIANO ALESSANDRO

Joint PhD Program between
UNIVERSITÀ DEGLI STUDI DI GENOVA UNIVERSITÄT BAYREUTH

16th March 2023

Introduction

Ground field: the field \mathbb{C} of complex numbers.

```
    Complex
    Surfaces
    with
pg}=q=
Massimiliano
    Alessandro
Introduction
Riemann
Surfaces
    Genus
    Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
pg}=q=
    CHPP
    PP4
    AC3
    Construction
    Method
```


Introduction

Ground field: the field \mathbb{C} of complex numbers.

Main objects: complex manifolds

```
    Complex
    Surfaces
    with
pg}=q=
Massimiliano
    Alessandro
Introduction
Riemann
Surfaces
    Genus
    Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
pg}=q=
    CHPP
    PP4
    AC3
    Construction
    Method
```


Introduction

Ground field: the field \mathbb{C} of complex numbers.

Main objects: complex manifolds

What is a complex manifold?

```
    Complex
    Surfaces
    with
pg}=q=
Massimiliano
    Alessandro
Introduction
Riemann
Surfaces
    Genus
    Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
pg}=q=
    CHPP
    PP4
    AC3
    Construction
    Method
```


Introduction

Ground field: the field \mathbb{C} of complex numbers.

Main objects: complex manifolds

What is a complex manifold?

```
Complex
Surfaces
with
\(p_{g}=q=2\)
```

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tor
Complex
Manifolds
Complex
Algebraic
Surfaces
Roughly speaking, a generalization of a Riemann Surface.

Riemann Surface: Definition

Let X be a Hausdorff topological space such that every point $x \in X$ has an open neighborhood which is homeomorphic to an open subset of $\mathbb{R}^{2}=\mathbb{C}$.

```
Complex
Surfaces
    with
pg}=q=
```

Massimiliano
Alessandro

Riemann Surface: Definition

Let X be a Hausdorff topological space such that every point $x \in X$ has an open neighborhood which is homeomorphic to an open subset of $\mathbb{R}^{2}=\mathbb{C}$.

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Riemann Surface: Definition

Let X be a Hausdorff topological space such that every point $x \in X$ has an open neighborhood which is homeomorphic to an open subset of $\mathbb{R}^{2}=\mathbb{C}$.

Definition (Complex chart)

A complex chart on X is a homeomorphism $\varphi: U \rightarrow V$ of an open subset $U \subset X$ onto an open subset $V \subset \mathbb{C}=\mathbb{R}^{2}$. Two complex charts $\varphi_{i}: U_{i} \rightarrow V_{i}, i=1,2$ are said to be holomorphically compatible if the map

$$
\varphi_{2} \circ \varphi_{1}^{-1}: \varphi_{1}\left(U_{1} \cap U_{2}\right) \rightarrow \varphi_{2}\left(U_{1} \cap U_{2}\right)
$$

is biholomorphic.

Riemann Surface: Definition

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Riemann
Surfaces
Genus
Complex Torí
Complex
Manifolds
Complex
Algebraic
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Figure: Upstairs open sets in X. Downstairs open setsin $\mathbb{C}_{\underline{\underline{\underline{E}}}}$

Riemann Surface: Formal Definition

A complex atlas on X is a collection

$$
\mathcal{U}:=\left\{\varphi_{i}: U_{i} \rightarrow V_{i} \mid i \in I\right\}
$$

of charts which are holomorphically compatible and which cover X, i.e.,

$$
\bigcup_{i \in I} U_{i}=X
$$

> Complex
> Surfaces
> with
> $p_{g}=q=2$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Riemann Surface: Formal Definition

A complex atlas on X is a collection

$$
\mathcal{U}:=\left\{\varphi_{i}: U_{i} \rightarrow V_{i} \mid i \in I\right\}
$$

of charts which are holomorphically compatible and which cover X, i.e.,

$$
\bigcup_{i \in I} U_{i}=X
$$

Two complex atlases \mathcal{U} and \mathcal{U}^{\prime} on X are called analytically equivalent if every chart of \mathcal{U} is holomorphically compatible with every chart of \mathcal{U}^{\prime}.

```
Complex Surfaces with \(p_{g}=q=2\)
```

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Riemann Surface: Formal Definition

A complex atlas on X is a collection

$$
\mathcal{U}:=\left\{\varphi_{i}: U_{i} \rightarrow V_{i} \mid i \in I\right\}
$$

of charts which are holomorphically compatible and which cover X, i.e.,

$$
\bigcup_{i \in I} U_{i}=X
$$

Two complex atlases \mathcal{U} and \mathcal{U}^{\prime} on X are called analytically equivalent if every chart of \mathcal{U} is holomorphically compatible with every chart of \mathcal{U}^{\prime}.

```
Complex Surfaces with \(p_{g}=q=2\)
```

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces

Definition

By a complex structure on X we mean an equivalence class $[\mathcal{U}]$ of analytically equivalent atlases on X.

Riemann Surface: Definition

Definition

A Riemann Surface is a pair $(X,[\mathcal{U}])$, where X is as above and [\mathcal{U}] is a complex structure on X.

> Complex
> Surfaces
> with
> $p_{g}=q=2$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
$A C 3$
Construction
Method

Riemann Surface: Definition

Definition

A Riemann Surface is a pair $(X,[\mathcal{U}])$, where X is as above and [\mathcal{U}] is a complex structure on X.

Example

- The complex plane \mathbb{C} : canonical atlas $\mathcal{U}=\{i d: \mathbb{C} \rightarrow \mathbb{C}\}$
- The Riemann Sphere $\mathbb{P}_{\mathbb{C}}^{1}:=\mathbb{C} \cup \infty$
- Complex Tori

$$
T=\mathbb{C} / \Lambda, \quad \wedge \text { lattice in } \mathbb{R}^{2}=\mathbb{C}
$$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

The genus of a Compact Riemann Surfaces

From now on, we assume a Riemann Surface to be compact.

Complex Surfaces with $p_{g}=q=2$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tor
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

The genus of a Compact Riemann Surfaces

From now on, we assume a Riemann Surface to be compact.

Topologically, a Compact Riemann Surface X is a compact topological surface.

> Complex Surfaces with $p_{g}=q=2$

Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

The genus of a Compact Riemann Surfaces

From now on, we assume a Riemann Surface to be compact.

Topologically, a Compact Riemann Surface X is a compact topological surface.

```
Complex Surfaces with \(p_{g}=q=2\)
```


The genus of a Compact Riemann Surfaces

From now on, we assume a Riemann Surface to be compact.

Topologically, a Compact Riemann Surface X is a compact topological surface.

```
Complex Surfaces with \(p_{g}=q=2\)
```

Massimiliano Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tor'
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
$A C 3$
Construction
Method

The genus of a Compact Riemann Surfaces

From now on, we assume a Riemann Surface to be compact.

Topologically, a Compact Riemann Surface X is a compact topological surface.

```
Complex Surfaces with \(p_{g}=q=2\)
```

Massimiliano Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tor'
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHP P
PP4
$A C 3$
Construction
Method

- $g=1: X \cong \mathbb{C} / \Lambda \cong S^{1} \times S^{1}$ (Complex Torus)

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

8 / 31

- $g=1: X \cong \mathbb{C} / \Lambda \cong S^{1} \times S^{1}$ (Complex Torus)

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

- $g=1: X \cong \mathbb{C} / \Lambda \cong S^{1} \times S^{1}$ (Complex Torus)

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds

- $g \geq 2$: Most Riemann Surfaces

Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

- $g=1: X \cong \mathbb{C} / \Lambda \cong S^{1} \times S^{1}$ (Complex Torus)

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds

- $g \geq 2$: Most Riemann Surfaces

Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction

Method

Complex Tori: Construction

Suppose $\omega_{1}, \omega_{2} \in \mathbb{C}$ are linearly independent over \mathbb{R}.

$$
\Lambda:=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}=\left\{n \omega_{1}+m \omega_{2}: n, m \in \mathbb{Z}\right\}
$$

> Complex
> Surfaces
> with
> $p_{g}=q=2$
Λ is called the lattice spanned by ω_{1} and ω_{2}

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Complex Tori: Construction

Complex Surfaces with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
$A C 3$
Construction
Method

Complex Tori: Construction

$$
z \sim z^{\prime} \bmod \Lambda \quad \Longleftrightarrow \quad z-z^{\prime} \in \Lambda
$$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Complex Tori: Construction

$$
z \sim z^{\prime} \bmod \Lambda \quad \Longleftrightarrow \quad z-z^{\prime} \in \Lambda
$$

```
Complex
Surfaces
    with
pg}=q=
```

Massimiliano
Alessandro
Introduction
Riemann
Surfaces

Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
we can endow T with a complex structure in a natural way.

CHPP
PP4
AC3
Construction
Method

Question

When are two tori

$$
T=\mathbb{C} / \Lambda, \quad T^{\prime}=\mathbb{C} / \Lambda^{\prime}
$$

isomorphic to each other?

Question

When are two tori

$$
T=\mathbb{C} / \Lambda, \quad T^{\prime}=\mathbb{C} / \Lambda^{\prime}
$$

isomorphic to each other?

Question

Is there a way to parametrize the family of all complex tori (up to isomorphism)?

```
    Complex
    Surfaces
    with
pg}=q=
    Massimiliano
    Alessandro
Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
pg}=q=
CHPP
PP4
AC3
Construction
Method
```


Fact

Every torus $T=C / \Lambda$ is isomorphic to a torus of the form

$$
T(\tau):=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau), \quad \operatorname{Im}(\tau)>0
$$

Complex
Surfaces with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
$A C 3$
Construction
Method

Fact

Every torus $T=C / \Lambda$ is isomorphic to a torus of the form

$$
T(\tau):=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau), \quad \operatorname{Im}(\tau)>0
$$

$$
\tau^{\prime}:=\frac{a \tau+b}{c \tau+d}
$$

Then, the tori $T(\tau)$ and $T\left(\tau^{\prime}\right)$ are isomorphic. Moreover, the converse holds.

Complex
Surfaces with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds

The Moduli Space of Complex Tori

The space parametrizing the isomorphism classes of complex tori is then

$$
\mathfrak{H}:=\mathbb{H} / S L(2, \mathbb{Z}),
$$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
$A C 3$
Construction
Method

The Moduli Space of Complex Tori

The space parametrizing the isomorphism classes of complex tori is then

$$
\mathfrak{H}:=\mathbb{H} / S L(2, \mathbb{Z}),
$$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces

$$
\mathbb{H}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}
$$

is called the Siegel Upper Half Plane
\mathfrak{H} is called the moduli space of complex tori.

Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
$A C 3$
Construction
Method

The Moduli Space of Complex Tori

The space parametrizing the isomorphism classes of complex tori is then

$$
\mathfrak{H}:=\mathbb{H} / S L(2, \mathbb{Z}),
$$

```
Complex Surfaces with \(p_{g}=q=2\)
```

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHP P
PP4
$A C 3$
Construction Method

The Moduli Space of Complex Tori

Figure: Fundamental domain of \mathfrak{H}, given by the grey part together with the boundary on the left plus half the arc on the bottom

Complex Surfaces with $p_{g}=q=2$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Complex Manifolds: Definition

Complex
Surfaces
with
$p_{g}=2$
Massimiliano
Alessandro
Alem

Complex Manifolds: Definition

Let X be a Hausdorff topological space which locally "looks like" $\mathbb{R}^{2 n}=\mathbb{C}^{n}$, i.e. every point $x \in X$ has an open neighborhood which is homeomorphic to an open subset of $\mathbb{R}^{2 n}=\mathbb{C}^{n}$.

```
Complex
Surfaces
    with
pg}=q=
Massimiliano
Alessandro
```


Complex Manifolds: Definition

Let X be a Hausdorff topological space which locally "looks like" $\mathbb{R}^{2 n}=\mathbb{C}^{n}$, i.e. every point $x \in X$ has an open neighborhood which is homeomorphic to an open subset of $\mathbb{R}^{2 n}=\mathbb{C}^{n}$.

```
Complex
Surfaces
    with
pg}=q=
```

Massimiliano Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Complex Manifolds: Definition

Let X be a Hausdorff topological space which locally "looks like" $\mathbb{R}^{2 n}=\mathbb{C}^{n}$, i.e. every point $x \in X$ has an open neighborhood which is homeomorphic to an open subset of $\mathbb{R}^{2 n}=\mathbb{C}^{n}$.

Generalizing the concept of holomorphicity to functions

$$
f=f\left(z_{1}, \ldots, z_{n}\right): U \subset \mathbb{C}^{n} \rightarrow \mathbb{C}
$$

we can define complex charts, atlases and complex structures in the same way as we did for Riemann Surfaces.

Definition (Complex Manifold)

A complex manifold is a pair $(X,[\mathcal{U}])$, where X is as above and $[\mathcal{U}]$ is a given complex structure on X.
We say that n is the (complex) dimension of X.

```
    Complex
    Surfaces
    with
pg}=q=
```


Complex Manifolds: some remarks

Remark

Riemann Surfaces are complex manifolds of dimension 1.

> Complex Surfaces with $p_{g}=q=2$

Massimiliano

Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Conatruction
Method

Complex Manifolds: some remarks

Remark

Riemann Surfaces are complex manifolds of dimension 1.

> Complex Surfaces with $p_{g}=q=2$

Remark

Complex Algebraic Geometers usually study just those compact manifolds X admitting a closed embedding

$$
\psi: X \hookrightarrow \mathbb{P}_{\mathbb{C}}^{N}, \quad \text { for some } N .
$$

They are also called projective manifolds:

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Complex Manifolds: some remarks

Remark

Riemann Surfaces are complex manifolds of dimension 1.

Remark

Complex Algebraic Geometers usually study just those compact manifolds X admitting a closed embedding

$$
\psi: X \hookrightarrow \mathbb{P}_{\mathbb{C}}^{N}, \quad \text { for some } N .
$$

They are also called projective manifolds: global algebraic equations (Chow's Theorem)

```
    Complex
    Surfaces
    with
pg}=q=
```

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Complex Manifolds: some remarks

Remark

Riemann Surfaces are complex manifolds of dimension 1.

Remark

Complex Algebraic Geometers usually study just those compact manifolds X admitting a closed embedding

$$
\psi: X \hookrightarrow \mathbb{P}_{\mathbb{C}}^{N}, \quad \text { for some } N .
$$

They are also called projective manifolds: global algebraic equations (Chow's Theorem)

Remark

Even if one knows that X is projective, it is not easy in general

CHPP
PP4
AC3
Construction
Method to find such global equations.

Complex Algebraic Surfaces

Definition (Surface)

A (complex algebraic) surface S is a projective manifold of complex dimension 2.

> Complex Surfaces with $p_{g}=q=2$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Complex Algebraic Surfaces

Definition (Surface)

A (complex algebraic) surface S is a projective manifold of complex dimension 2.

Example

- The projective plane $\mathbb{P}_{\mathbb{C}}^{2}$.
- Abelian surfaces (analogous to complex tori)

$$
A=\mathbb{C}^{2} / \Lambda, \quad \wedge \text { lattice in } \mathbb{R}^{4}=\mathbb{C}^{2}
$$

Complex Surfaces with $p_{g}=q=2$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Complex Algebraic Surfaces

Definition (Surface)

A (complex algebraic) surface S is a projective manifold of Surfaces with $p_{g}=q=2$ complex dimension 2.

Example

- The projective plane $\mathbb{P}_{\mathbb{C}}^{2}$.
- Abelian surfaces (analogous to complex tori)

$$
A=\mathbb{C}^{2} / \Lambda, \quad \Lambda \text { lattice in } \mathbb{R}^{4}=\mathbb{C}^{2}
$$

Definition

A surface S is said to be minimal if it does not contains any (-1) curve, i.e. submanifold C of dimension 1 such that $C \cong \mathbb{P}^{1}, \quad C^{2}=-1$.

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
$A C_{3}$
Construction
Method

Numerical Invariants

For a Compact Riemann Surface X one numerical invariant is sufficient: the genus $g(X)$.

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

Numerical Invariants

For a Compact Riemann Surface X one numerical invariant is sufficient: the genus $g(X)$.
For a surface S we need more invariants.

```
Complex Surfaces with \(p_{g}=q=2\)
```


Numerical Invariants

For a Compact Riemann Surface X one numerical invariant is sufficient: the genus $g(X)$.
For a surface S we need more invariants. Let Ω_{S}^{1} be the sheaf of holomorphic 1-differential forms on S

```
Complex
Surfaces
    with
pg}=q=
```

Massimiliano
Alessandro and set

$$
\omega_{S}:=\bigwedge^{2} \Omega_{S}^{1}=\operatorname{det}\left(\Omega_{S}^{1}\right)
$$

Numerical Invariants

For a Compact Riemann Surface X one numerical invariant is sufficient: the genus $g(X)$.
For a surface S we need more invariants.
Let Ω_{S}^{1} be the sheaf of holomorphic 1-differential forms on S

```
Complex Surfaces with \(p_{g}=q=2\)
``` and set
\[
\omega_{S}:=\bigwedge^{2} \Omega_{S}^{1}=\operatorname{det}\left(\Omega_{S}^{1}\right)
\]

Define

\section*{Numerical Invariants}

For a Compact Riemann Surface \(X\) one numerical invariant is sufficient: the genus \(g(X)\).
For a surface \(S\) we need more invariants.
Let \(\Omega_{S}^{1}\) be the sheaf of holomorphic 1-differential forms on \(S\)
```

Complex Surfaces with $p_{g}=q=2$

``` and set
\[
\omega_{S}:=\bigwedge^{2} \Omega_{S}^{1}=\operatorname{det}\left(\Omega_{S}^{1}\right)
\]

Define
- the irregularity
\[
q:=q(S):=h^{0}\left(S, \Omega_{S}^{1}\right)=\operatorname{dim}_{\mathbb{C}} H^{0}\left(S, \Omega_{S}^{1}\right)
\]

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method

\section*{Numerical Invariants}

For a Compact Riemann Surface \(X\) one numerical invariant is sufficient: the genus \(g(X)\).
For a surface \(S\) we need more invariants.
Let \(\Omega_{S}^{1}\) be the sheaf of holomorphic 1-differential forms on \(S\)
```

Complex Surfaces with $p_{g}=q=2$

```

Massimiliano
Alessandro and set
\[
\omega_{S}:=\bigwedge^{2} \Omega_{S}^{1}=\operatorname{det}\left(\Omega_{S}^{1}\right)
\]

Define
- the irregularity
\[
q:=q(S):=h^{0}\left(S, \Omega_{S}^{1}\right)=\operatorname{dim}_{\mathbb{C}} H^{0}\left(S, \Omega_{S}^{1}\right)
\]
- the geometric genus
\[
p_{g}:=p_{g}(S):=h^{0}\left(S, \omega_{S}\right)=\operatorname{dim}_{\mathbb{C}} H^{0}\left(S, \omega_{S}\right)
\]

\section*{Numerical Invariants}

For a Compact Riemann Surface \(X\) one numerical invariant is sufficient: the genus \(g(X)\).
For a surface \(S\) we need more invariants.
Let \(\Omega_{S}^{1}\) be the sheaf of holomorphic 1-differential forms on \(S\)
\[
\omega_{S}:=\bigwedge^{2} \Omega_{S}^{1}=\operatorname{det}\left(\Omega_{S}^{1}\right)
\]

Define
- the irregularity
\[
q:=q(S):=h^{0}\left(S, \Omega_{S}^{1}\right)=\operatorname{dim}_{\mathbb{C}} H^{0}\left(S, \Omega_{S}^{1}\right)
\]
- the geometric genus
\[
p_{g}:=p_{g}(S):=h^{0}\left(S, \omega_{S}\right)=\operatorname{dim}_{\mathbb{C}} H^{0}\left(S, \omega_{S}\right)
\]
- the self-intersection of the canonical divisor \(K_{S}^{2}\)

\section*{Kodaira dimension}

To every surface \(S\) we attach a further invariant \(\kappa(S)\) called Kodaira dimension.

\section*{Kodaira dimension}

To every surface \(S\) we attach a further invariant \(\kappa(S)\) called Kodaira dimension.
\[
\kappa(S)=-\infty, 0,1,2
\]

\section*{Kodaira dimension}

To every surface \(S\) we attach a further invariant \(\kappa(S)\) called Kodaira dimension.
\[
\kappa(S)=-\infty, 0,1,2
\]

The idea is that a random surface \(S\) has maximal Kodaira dimension \(\kappa(S)=2\).
```

Complex

## Kodaira dimension

To every surface $S$ we attach a further invariant $\kappa(S)$ called Kodaira dimension.

$$
\kappa(S)=-\infty, 0,1,2
$$

The idea is that a random surface $S$ has maximal Kodaira dimension $\kappa(S)=2$.

## Definition

A surface $S$ is said to be of general type if $\kappa(S)=2$.

```
Complex

\section*{\(p_{g}=q=2:\) Notation and set-up}

\section*{\(p_{g}=q=2:\) Notation and set-up}
\(S\) will denote a minimal surface of general type with \(p_{g}=q=2\)

\author{
Complex Surfaces with \(p_{g}=q=2\) \\ Massimiliano \\ Alessandro \\ Introduction \\ Riemann \\ Surfaces \\ Genus \\ Complex Tori \\ Complex \\ Manifolds \\ Complex \\ Algebraic \\ Surfaces \\ \(p_{g}=q=2\) \\ CHPP \\ PP4 \\ AC3 \\ Construction \\ Method
}

\section*{\(p_{g}=q=2:\) Notation and set-up}
\(S\) will denote a minimal surface of general type with \(p_{g}=q=2\)
For such a surface \(S\) there exist an Abelian surface \(A\) together with a morphsim
\[
\alpha: S \rightarrow A
\]
fulfilling a certain universal property.

> Complex Surfaces with \(p_{g}=q=2\)

Massimiliano Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
\(A C 3\)
Construction
Method

\section*{\(p_{g}=q=2:\) Notation and set-up}
\(S\) will denote a minimal surface of general type with \(p_{g}=q=2\)

For such a surface \(S\) there exist an Abelian surface \(A\) together with a morphsim
\[
\alpha: S \rightarrow A
\]
fulfilling a certain universal property.
\(\alpha\) : Albanese map of \(S\) (we assume it to be a surjective morphism of degree \(d\))

\section*{\(p_{g}=q=2:\) Notation and set-up}
\(S\) will denote a minimal surface of general type with \(p_{g}=q=2\)

For such a surface \(S\) there exist an Abelian surface \(A\) together with a morphsim
\[
\alpha: S \rightarrow A
\]
fulfilling a certain universal property.
\(\alpha\) : Albanese map of \(S\) (we assume it to be a surjective morphism of degree \(d\))
\(A\) : Albanese surface of \(S\)

\section*{\(p_{g}=q=2:\) Notation and set-up}
\(S\) will denote a minimal surface of general type with \(p_{g}=q=2\)
For such a surface \(S\) there exist an Abelian surface \(A\) together with a morphsim
\[
\alpha: S \rightarrow A
\]
fulfilling a certain universal property.
\(\alpha\) : Albanese map of \(S\) (we assume it to be a surjective morphism of degree \(d\))

\section*{\(A\) : Albanese surface of \(S\)}
\(p_{g}=q=2\) : many contributions by several authors, but still widely open

Description of results from a joint work with Fabrizio Catanese

\section*{\(p_{g}=q=2:\) CHPP surfaces}

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method

\section*{\(p_{g}=q=2:\) CHPP surfaces}

\section*{CHPP surfaces:}

Complex Surfaces with
\(p_{g}=q=2\)
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method

\section*{\(p_{g}=q=2:\) CHPP surfaces}

CHPP surfaces: \(p_{g}(S)=q(S)=2\),
Complex Surfaces with \(p_{g}=q=2\)

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method

\section*{\(p_{g}=q=2:\) CHPP surfaces}

CHPP surfaces: \(p_{g}(S)=q(S)=2, K_{S}^{2}=5\),

Complex
Surfaces
with
\(p_{g}=q=2\)
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method

\section*{\(p_{g}=q=2:\) CHPP surfaces}

CHPP surfaces: \(p_{g}(S)=q(S)=2, K_{S}^{2}=5, d=3\)

Complex
Surfaces
with
\(p_{g}=q=2\)
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method

\section*{\(p_{g}=q=2:\) CHPP surfaces}

CHPP surfaces: \(p_{g}(S)=q(S)=2, K_{S}^{2}=5, d=3\)
Named after Chen-Hacon-Penegini-Polizzi (known family)

Complex
Surfaces
with
\(p_{g}=q=2\)
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method

\section*{\(p_{g}=q=2:\) CHPP surfaces}

CHPP surfaces: \(p_{g}(S)=q(S)=2, K_{S}^{2}=5, d=3\)
Named after Chen-Hacon-Penegini-Polizzi (known family)
\(S\) is a free quotient

> Complex
> Surfaces
> with
> \(p_{g}=q=2\)
> Massimiliano
> Alessandro
\[
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 2 \mathbb{Z})^{2},
\]
\[
p_{g}=q=2: \text { CHPP surfaces }
\]

CHPP surfaces: \(p_{g}(S)=q(S)=2, K_{S}^{2}=5, d=3\)
Named after Chen-Hacon-Penegini-Polizzi (known family)
```

Complex Surfaces with $p_{g}=q=2$
Massimiliano
Alessandro

```
\(S\) is a free quotient
Introduction
\[
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}
\]
\(S^{\prime}:=S^{\prime}(\lambda):=\left\{x_{1}\left(y_{1}^{3}+\lambda y_{1} y_{2}^{2}\right)+x_{2}\left(y_{2}^{3}+\lambda y_{2} y_{1}^{2}\right)=0\right\} \subset \mathbb{P}^{1} \times A^{\prime}\),

Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method
\[
p_{g}=q=2: \text { CHPP surfaces }
\]

CHPP surfaces: \(p_{g}(S)=q(S)=2, K_{S}^{2}=5, d=3\)
Named after Chen-Hacon-Penegini-Polizzi (known family)
\(S\) is a free quotient
```

Complex Surfaces with $p_{g}=q=2$

$$
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}
$$

$$
S^{\prime}:=S^{\prime}(\lambda):=\left\{x_{1}\left(y_{1}^{3}+\lambda y_{1} y_{2}^{2}\right)+x_{2}\left(y_{2}^{3}+\lambda y_{2} y_{1}^{2}\right)=0\right\} \subset \mathbb{P}^{1} \times A^{\prime}
$$

- $A^{\prime}$ is an Abelian surface with a polarization $D$ of type (1, 2),

Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHP P
PP4
AC3
Construction
Method

$$
p_{g}=q=2: \text { CHPP surfaces }
$$

CHPP surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=5, d=3$
Named after Chen-Hacon-Penegini-Polizzi (known family)
$S$ is a free quotient

```
Complex Surfaces with \(p_{g}=q=2\)
\[
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}
\]
\[
S^{\prime}:=S^{\prime}(\lambda):=\left\{x_{1}\left(y_{1}^{3}+\lambda y_{1} y_{2}^{2}\right)+x_{2}\left(y_{2}^{3}+\lambda y_{2} y_{1}^{2}\right)=0\right\} \subset \mathbb{P}^{1} \times A^{\prime}
\]
- \(A^{\prime}\) is an Abelian surface with a polarization \(D\) of type \((1,2)\),
- \(\left\{x_{1}, x_{2}\right\}\) is a canonical basis of \(V=H^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(D)\right)\),
\[
p_{g}=q=2: \text { CHPP surfaces }
\]

CHPP surfaces: \(p_{g}(S)=q(S)=2, K_{S}^{2}=5, d=3\)
Named after Chen-Hacon-Penegini-Polizzi (known family)
\(S\) is a free quotient
\[
\begin{gathered}
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} \\
S^{\prime}:=S^{\prime}(\lambda):=\left\{x_{1}\left(y_{1}^{3}+\lambda y_{1} y_{2}^{2}\right)+x_{2}\left(y_{2}^{3}+\lambda y_{2} y_{1}^{2}\right)=0\right\} \subset \mathbb{P}^{1} \times A^{\prime},
\end{gathered}
\]
- \(A^{\prime}\) is an Abelian surface with a polarization \(D\) of type \((1,2)\),
- \(\left\{x_{1}, x_{2}\right\}\) is a canonical basis of \(V=H^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(D)\right)\),
- \(\left\{y_{1}, y_{2}\right\}\) homogeneous coordinates of \(\mathbb{P}^{1}=\mathbb{P}(V)\),
```

Complex Surfaces with $p_{g}=q=2$

Construction

$$
p_{g}=q=2: \text { CHPP surfaces }
$$

CHPP surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=5, d=3$
Named after Chen-Hacon-Penegini-Polizzi (known family)
$S$ is a free quotient

$$
\begin{gathered}
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} \\
S^{\prime}:=S^{\prime}(\lambda):=\left\{x_{1}\left(y_{1}^{3}+\lambda y_{1} y_{2}^{2}\right)+x_{2}\left(y_{2}^{3}+\lambda y_{2} y_{1}^{2}\right)=0\right\} \subset \mathbb{P}^{1} \times A^{\prime},
\end{gathered}
$$

- $A^{\prime}$ is an Abelian surface with a polarization $D$ of type $(1,2)$,
- $\left\{x_{1}, x_{2}\right\}$ is a canonical basis of $V=H^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(D)\right)$,
- $\left\{y_{1}, y_{2}\right\}$ homogeneous coordinates of $\mathbb{P}^{1}=\mathbb{P}(V)$,
- $\lambda \in \mathbb{C}$.


## $p_{g}=q=2:$ CHPP surfaces

## Theorem (-, Catanese)

The CHPP surfaces form an irreducible connected component of the moduli space of surfaces of general type with $K_{S}^{2}=5$, $p_{g}(S)=q(S)=2$, and Albanese $\operatorname{map} \alpha: S \rightarrow A=A l b(S)$ of degree $d=3$.
It coincides with the component found by Penegini-Polizzi in 2013 and contains the so-called Chen-Hacon surfaces.

Complex Surfaces with $p_{g}=q=2$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2: P P 4$ surfaces

PP4 surfaces:

## $p_{g}=q=2: P P 4$ surfaces

PP4 surfaces: $p_{g}(S)=q(S)=2$,

Complex Surfaces with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2:$ PP4 surfaces

PP4 surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6$,

Complex Surfaces with $p_{g}=q=2$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2:$ PP4 surfaces

PP4 surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=4$

Complex Surfaces with $p_{g}=q=2$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2:$ PP4 surfaces

PP4 surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=4$
Named after Penegini-Polizzi (known family)

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2:$ PP4 surfaces

PP4 surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=4$
Named after Penegini-Polizzi (known family) $S$ is a free quotient

$$
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 3 \mathbb{Z})^{2},
$$

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
$A C 3$
Construction
Method

## $p_{g}=q=2:$ PP4 surfaces

PP4 surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=4$
Named after Penegini-Polizzi (known family)
$S$ is a free quotient

$$
\begin{aligned}
& S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}, \\
& S^{\prime}:=S^{\prime}(\mu):=\{\operatorname{rank}(M) \leq 1\} \subset \mathbb{P}^{2} \times A^{\prime}, \\
& M=\left(\begin{array}{ccc}
x_{1} & x_{3} & x_{2} \\
y_{1}^{2}+\mu y_{2} y_{3} & y_{3}^{2}+\mu y_{1} y_{2} & y_{2}^{2}+\mu y_{1} y_{3}
\end{array}\right)
\end{aligned}
$$

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
$A C 3$
Construction
Method

## $p_{g}=q=2:$ PP4 surfaces

PP4 surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=4$
Named after Penegini-Polizzi (known family)
$S$ is a free quotient

$$
\begin{aligned}
& S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}, \\
& S^{\prime}:=S^{\prime}(\mu):=\{\operatorname{rank}(M) \leq 1\} \subset \mathbb{P}^{2} \times A^{\prime} \text {, } \\
& M=\left(\begin{array}{ccc}
x_{1} & x_{3} & x_{2} \\
y_{1}^{2}+\mu y_{2} y_{3} & y_{3}^{2}+\mu y_{1} y_{2} & y_{2}^{2}+\mu y_{1} y_{3}
\end{array}\right)
\end{aligned}
$$

- $A^{\prime}$ is an Abelian surface with a polarization $D$ of type $(1,3)$,


## $p_{g}=q=2: P P 4$ surfaces

PP4 surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=4$
Named after Penegini-Polizzi (known family)
$S$ is a free quotient

$$
\begin{aligned}
& S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}, \\
& S^{\prime}:=S^{\prime}(\mu):=\{\operatorname{rank}(M) \leq 1\} \subset \mathbb{P}^{2} \times A^{\prime} \text {, } \\
& M=\left(\begin{array}{ccc}
x_{1} & x_{3} & x_{2} \\
y_{1}^{2}+\mu y_{2} y_{3} & y_{3}^{2}+\mu y_{1} y_{2} & y_{2}^{2}+\mu y_{1} y_{3}
\end{array}\right)
\end{aligned}
$$

- $A^{\prime}$ is an Abelian surface with a polarization $D$ of type $(1,3)$,
- $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a canonical basis of $V=H^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(D)\right)$,


## $p_{g}=q=2:$ PP4 surfaces

PP4 surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=4$
Named after Penegini-Polizzi (known family)
$S$ is a free quotient

$$
\begin{aligned}
& S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}, \\
& S^{\prime}:=S^{\prime}(\mu):=\{\operatorname{rank}(M) \leq 1\} \subset \mathbb{P}^{2} \times A^{\prime} \text {, } \\
& M=\left(\begin{array}{ccc}
x_{1} & x_{3} & x_{2} \\
y_{1}^{2}+\mu y_{2} y_{3} & y_{3}^{2}+\mu y_{1} y_{2} & y_{2}^{2}+\mu y_{1} y_{3}
\end{array}\right)
\end{aligned}
$$

- $A^{\prime}$ is an Abelian surface with a polarization $D$ of type $(1,3)$,
- $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a canonical basis of $V=H^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(D)\right)$,
- $\left\{y_{1}, y_{2}, y_{3}\right\}$ homogeneous coordinates of $\mathbb{P}^{2}=\mathbb{P}(V)$,

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2:$ PP4 surfaces

PP4 surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=4$
Named after Penegini-Polizzi (known family)
$S$ is a free quotient

$$
\begin{gathered}
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 3 \mathbb{Z})^{2} \\
S^{\prime}:=S^{\prime}(\mu):=\{\operatorname{rank}(M) \leq 1\} \subset \mathbb{P}^{2} \times A^{\prime}, \\
M=\left(\begin{array}{ccc}
x_{1} & x_{3} & x_{2} \\
y_{1}^{2}+\mu y_{2} y_{3} & y_{3}^{2}+\mu y_{1} y_{2} & y_{2}^{2}+\mu y_{1} y_{3}
\end{array}\right)
\end{gathered}
$$

- $A^{\prime}$ is an Abelian surface with a polarization $D$ of type $(1,3)$,
- $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a canonical basis of $V=H^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(D)\right)$,
- $\left\{y_{1}, y_{2}, y_{3}\right\}$ homogeneous coordinates of $\mathbb{P}^{2}=\mathbb{P}(V)$,
- $\mu \in \mathbb{C}$.


## Theorem (-, Catanese)

The family of PP4 surfaces provides an irreducible, connected component of the moduli space of surfaces of general type with $p_{g}=q=2, K^{2}=6$ and Albanese map of degree 4.
It coincides with the component found by Penegini-Polizzi in 2014.

```
Complex Surfaces with \(p_{g}=q=2\)
```

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tor
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
$A C 3$
Construction
Method

## $p_{g}=q=2$ : the new family of AC3 surfaces

## AC3 surfaces:

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2$ : the new family of AC3 surfaces

$A C 3$ surfaces: $p_{g}(S)=q(S)=2$,

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2$ : the new family of AC3 surfaces

$A C 3$ surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6$,

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2$ : the new family of AC3 surfaces

AC3 surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=3$
Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2$ : the new family of AC3 surfaces

$A C 3$ surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=3$
It is a new family with these invariants.
Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2$ : the new family of AC3 surfaces

$A C 3$ surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=3$
It is a new family with these invariants.
$S$ is a free quotient

$$
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 3 \mathbb{Z})^{2},
$$

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2$ : the new family of AC3 surfaces

$A C 3$ surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=3$
It is a new family with these invariants.
$S$ is a free quotient

$$
\begin{gathered}
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 3 \mathbb{Z})^{2} \\
S^{\prime}:=\left\{(y, z) \in \mathbb{P}^{2} \times A^{\prime} \mid \sum_{j=1}^{3} y_{j} x_{j}(z)=0, \sum_{i=1}^{3} y_{i}^{2} y_{i+1}=0\right\} \subset \mathbb{P}^{2} \times A^{\prime},
\end{gathered}
$$

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
$A C 3$
Construction
Method

## $p_{g}=q=2$ : the new family of AC3 surfaces

$A C 3$ surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=3$
It is a new family with these invariants.
$S$ is a free quotient

$$
\begin{gathered}
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}, \\
S^{\prime}:=\left\{(y, z) \in \mathbb{P}^{2} \times A^{\prime} \mid \sum_{j=1}^{3} y_{j} x_{j}(z)=0, \sum_{i=1}^{3} y_{i}^{2} y_{i+1}=0\right\} \subset \mathbb{P}^{2} \times A^{\prime},
\end{gathered}
$$

Complex Surfaces with $p_{g}=q=2$

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces

- $A^{\prime}$ is an Abelian surface with a polarization $D$ of type $(1,3)$,
$p_{g}=q=2$
CHP P
PP4
AC3
Construction
Method


## $p_{g}=q=2$ : the new family of AC3 surfaces

$A C 3$ surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=3$
It is a new family with these invariants.
$S$ is a free quotient

$$
\begin{gathered}
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}, \\
S^{\prime}:=\left\{(y, z) \in \mathbb{P}^{2} \times A^{\prime} \mid \sum_{j=1}^{3} y_{j} x_{j}(z)=0, \sum_{i=1}^{3} y_{i}^{2} y_{i+1}=0\right\} \subset \mathbb{P}^{2} \times A^{\prime},
\end{gathered}
$$

- $A^{\prime}$ is an Abelian surface with a polarization $D$ of type $(1,3)$,
- $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a canonical basis of $V=H^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(D)\right)$,


## $p_{g}=q=2$ : the new family of AC3 surfaces

$A C 3$ surfaces: $p_{g}(S)=q(S)=2, K_{S}^{2}=6, d=3$
It is a new family with these invariants.
$S$ is a free quotient

$$
\begin{gathered}
S:=S^{\prime} / G, \quad G \cong(\mathbb{Z} / 3 \mathbb{Z})^{2}, \\
S^{\prime}:=\left\{(y, z) \in \mathbb{P}^{2} \times A^{\prime} \mid \sum_{j=1}^{3} y_{j} x_{j}(z)=0, \sum_{i=1}^{3} y_{i}^{2} y_{i+1}=0\right\} \subset \mathbb{P}^{2} \times A^{\prime},
\end{gathered}
$$

- $A^{\prime}$ is an Abelian surface with a polarization $D$ of type $(1,3)$,
- $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a canonical basis of $V=H^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(D)\right)$,
- $\left\{y_{1}, y_{2}, y_{3}\right\}$ homogeneous coordinates of $\mathbb{P}^{2} \equiv \mathbb{P}(\underline{V})$, with

$$
p_{g}=q=2
$$

Theorem (Catanese, Sernesi)
The family of AC3 surfaces provides a new component of the moduli space of surfaces of general type with $p_{g}=q=2$, $K^{2}=6$ and Albanese map of degree 3 .

## $p_{g}=q=2:$ our construction method

Complex Surfaces with<br>$$
p_{g}=q=2
$$<br>Massimiliano<br>Alessandro<br>Introduction<br>Riemann<br>Surfaces<br>Genus<br>Complex Tori<br>Complex<br>Manifolds<br>Complex<br>Algebraic<br>Surfaces<br>$p_{g}=q=2$<br>CHPP<br>PP4<br>AC3<br>Construction<br>Method

## $p_{g}=q=2:$ our construction method

Let $A^{\prime}$ be an Abelian surface with a divisor $D$ yielding a polarization of type ( $\delta_{1}, \delta_{2}$ ) (hence with Pfaffian $\delta=\delta_{1} \delta_{2}$ ).

Complex
Surfaces
with
$p_{g}=q=2$
Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

## $p_{g}=q=2:$ our construction method

Let $A^{\prime}$ be an Abelian surface with a divisor $D$ yielding a polarization of type ( $\delta_{1}, \delta_{2}$ ) (hence with Pfaffian $\delta=\delta_{1} \delta_{2}$ ). Then,

$$
V:=H^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(D)\right)
$$

```
Complex Surfaces with \(p_{g}=q=2\)
```

Massimiliano
Alessandro
is a $\delta$-dimensional vector space.

## $p_{g}=q=2:$ our construction method

Let $A^{\prime}$ be an Abelian surface with a divisor $D$ yielding a polarization of type $\left(\delta_{1}, \delta_{2}\right)$ (hence with Pfaffian $\delta=\delta_{1} \delta_{2}$ ). Then,

$$
V:=H^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(D)\right)
$$

```
Complex
is a \(\delta\)-dimensional vector space.
Consider the group of translations
\[
G=\operatorname{ker} \Phi_{D}
\]
leaving the isomorphism class of \(\mathcal{O}_{A^{\prime}}(D)\) invariant.

\section*{\(p_{g}=q=2:\) our construction method}

Let \(A^{\prime}\) be an Abelian surface with a divisor \(D\) yielding a polarization of type \(\left(\delta_{1}, \delta_{2}\right)\) (hence with Pfaffian \(\delta=\delta_{1} \delta_{2}\)). Then,
\[
V:=H^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(D)\right)
\]
```

Complex Surfaces with $p_{g}=q=2$

```

Massimiliano Alessandro
is a \(\delta\)-dimensional vector space.
Consider the group of translations
\[
G=\operatorname{ker} \Phi_{D}
\]
leaving the isomorphism class of \(\mathcal{O}_{A^{\prime}}(D)\) invariant. This is the kernel of the isogeny
\[
\begin{gathered}
\Phi_{D}: A^{\prime} \rightarrow A^{\prime V}:=A \\
x \longmapsto t_{x}^{*} D-D
\end{gathered}
\]

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHP P
PP4
AC3
Construction
Method

\section*{\(p_{g}=q=2:\) our construction method}

\section*{Setting}
\[
H_{D}:=\left(\mathbb{Z} / \delta_{1}\right) \times\left(\mathbb{Z} / \delta_{2},\right)
\]
we have that
```

    Complex
    Surfaces
    with
    pg}=q=
Massimiliano
Alessandro
Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
pg}=q=
CHPP
PP4
AC3
Construction
Method

```

\section*{\(p_{g}=q=2:\) our construction method}

\section*{Setting}
\[
H_{D}:=\left(\mathbb{Z} / \delta_{1}\right) \times\left(\mathbb{Z} / \delta_{2},\right)
\]
we have that
- \(G \cong H_{D}^{2}\)

```

    Complex
    Surfaces
    with
    pg}=q=
Massimiliano
Alessandro
Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
pg}=q=
CHPP
PP4
AC3
Construction
Method

```

\section*{\(p_{g}=q=2:\) our construction method}

Setting
\[
H_{D}:=\left(\mathbb{Z} / \delta_{1}\right) \times\left(\mathbb{Z} / \delta_{2},\right)
\]
we have that
- \(G \cong H_{D}^{2}\)
- \(V\) is an irreducible representation of a finite Heisenberg group \(\mathcal{H}_{D}:=\operatorname{Heis}\left(H_{D}\right)\), called the Schrödinger representation.
```

Complex
Surfaces
with
pg}=q=
Massimiliano
Alessandro
Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

```

\section*{\(p_{g}=q=2:\) our construction method}

Setting
\[
H_{D}:=\left(\mathbb{Z} / \delta_{1}\right) \times\left(\mathbb{Z} / \delta_{2},\right)
\]
we have that
- \(G \cong H_{D}^{2}\)
- \(V\) is an irreducible representation of a finite Heisenberg group \(\mathcal{H}_{D}:=\operatorname{Heis}\left(H_{D}\right)\), called the Schrödinger representation.
Moreover:
```

Complex
Surfaces
with
pg}=q=
Massimiliano
Alessandro
Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
$p_{g}=q=2$
CHPP
PP4
AC3
Construction
Method

```

\section*{\(p_{g}=q=2:\) our construction method}

Setting
\[
H_{D}:=\left(\mathbb{Z} / \delta_{1}\right) \times\left(\mathbb{Z} / \delta_{2},\right)
\]
we have that
- \(G \cong H_{D}^{2}\)
- \(V\) is an irreducible representation of a finite Heisenberg group \(\mathcal{H}_{D}:=\operatorname{Heis}\left(H_{D}\right)\), called the Schrödinger representation.
Moreover:
- the centre \(\mathcal{C}\) of \(\mathcal{H}_{D}\) acts by scalar multiplication;
```

Complex
Surfaces
with
$p_{g}=q=2$

```

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tor
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method

\section*{\(p_{g}=q=2:\) our construction method}

Setting
\[
H_{D}:=\left(\mathbb{Z} / \delta_{1}\right) \times\left(\mathbb{Z} / \delta_{2},\right)
\]
we have that
- \(G \cong H_{D}^{2}\)
- \(V\) is an irreducible representation of a finite Heisenberg group \(\mathcal{H}_{D}:=\operatorname{Heis}\left(H_{D}\right)\), called the Schrödinger representation.
Moreover:
- the centre \(\mathcal{C}\) of \(\mathcal{H}_{D}\) acts by scalar multiplication;
- \(\mathcal{H}_{D} / \mathcal{C} \cong G\).

\author{
Complex \\ Surfaces \\ with \\ \(p_{g}=q=2\)
}

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method

\section*{\(p_{g}=q=2:\) our construction method}

Setting
\[
H_{D}:=\left(\mathbb{Z} / \delta_{1}\right) \times\left(\mathbb{Z} / \delta_{2},\right)
\]
we have that
- \(G \cong H_{D}^{2}\)
- \(V\) is an irreducible representation of a finite Heisenberg group \(\mathcal{H}_{D}:=\operatorname{Heis}\left(H_{D}\right)\), called the Schrödinger representation.
Moreover:
- the centre \(\mathcal{C}\) of \(\mathcal{H}_{D}\) acts by scalar multiplication;
- \(\mathcal{H}_{D} / \mathcal{C} \cong G\).

Therefore, \(\mathbb{P}(V)\) is a projective representation of \(G\).

\section*{\(p_{g}=q=2:\) our construction method}

Our method consists in describing a surface
\[
S^{\prime} \subset \mathbb{P}^{\delta-1} \times A^{\prime}=\mathbb{P}(V) \times A^{\prime}
\]
which is \(G\)-invariant for the \(G\)-action of product type on \(\mathbb{P}(V) \times A^{\prime}\).

\author{
Complex \\ Surfaces \\ with \\ \(p_{g}=q=2\)
}

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method

\section*{\(p_{g}=q=2:\) our construction method}

Our method consists in describing a surface
\[
S^{\prime} \subset \mathbb{P}^{\delta-1} \times A^{\prime}=\mathbb{P}(V) \times A^{\prime},
\]
which is \(G\)-invariant for the \(G\)-action of product type on \(\mathbb{P}(V) \times A^{\prime}\).

Finally, we obtain \(S\) as the free quotient \(S:=S^{\prime} / G\).

\author{
Complex \\ Surfaces \\ with \\ \(p_{g}=q=2\)
}

Massimiliano
Alessandro

Introduction
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method

Complex Surfaces
with
\(p_{g}=q=2\)
Massimiliano
Alessandro

Introduction
Thanks for listening!
Riemann
Surfaces
Genus
Complex Tori
Complex
Manifolds
Complex
Algebraic
Surfaces
\(p_{g}=q=2\)
CHPP
PP4
AC3
Construction
Method```

